

سالیتون های نوری کند در نقطه کوانتومی شبه نیمکروی با لایه خیس

معصومه دژکام'، عبدالناصر ذاکری' و علیرضا کشاورز

ٔ بخش فیزیک، دانشکده علوم، دانشگاه شیراز

^۲ گروه فیزیک، دانشکده علوم، دانشگاه صنعتی شیراز

چکیده – در این مقاله نقطه کوانتومی شبه نیمکروی با لایه خیس را در نظر می گیریم. ساختار الکترونی سیستم را به روش المان محدود حساب می کنیم. برای بررسی وابستگی به شکل نقطه، ساختار الکترونی را برای نقطه هایی با ارتفاع های مختلف ، یعنی تغییر شکل از نقطه پخت تا نیمکره با شعاع و ارتفاع مساوی، بدست می آوریم. دو میدان لیزری کنترل قوی و کاوشگر ضعیف را به سیستم اعمال می کنیم. بخاطر تداخل کوانتومی، جذب پالس کاوشگر کاهش می یابد و سالیتون با سرعت کمتر از نور در سیستم نقطه کوانتومی جامد تشکیل می شود.

كليد واژه- خواص اپتيكي، ساختار الكتروني، ساليتون نوري، نقطه كوانتومي شبه نيمكروي.

Slow Optical Solitons in a Hemispherical Quantum Dot with a Wetting Layer

Masoomeh Dezhkam¹, Abdolnasser Zakery¹ and Alireza Keshavarz²

¹Department of Physics, College of Sciences, Shiraz University ²Department of Physics, Faculty of Science, Shiraz University of Technology

Abstract- In this work, we consider a hemispherical quantum dot with a wetting layer. We obtain the electronic structure of the system by finite element method. To investigate the shape dependency, we calculate the electronic structure for different dot heights, i.e. shape changes from oblate to semispherical dot. We apply two strong control and weak probe laser fields to the system. Because of the quantum interference, the probe pulse absorption decreases and the slow soliton forms in the solid quantum dot system.

Keywords: Electronic structure, Hemispherical quantum dots, Optical properties, Optical solitons.

۱– مقدمه

در سالهای اخیر ساختار الکترونی و خواص اپتیکی نقطه های کوانتومی نیم رسانا توسط محققان مورد بررسی قرار گرفته است[۵–۱]. ما در این مقاله ساختار الکترونی نقطه شبه نیمکروی با لایه خیس را به روش المان محدود بدست می آوریم و بستگی آن به شکل و اندازه نقطه را بررسی می کنیم. درمقابل تحقیقات انجام شده در مراجع بالا، که برای بررسی خواص اپتیکی از یک لیزر استفاده می کنند، ما دو میدان لیزری کنترل و کاوشگر به سیستم اعمال می کنیم که بخاطر تداخل کوانتومی (که خود باعث پدیده هایی چون شفافیت القاییده الکترومغناطیسی پالس کاوشگر در پنجره شفافیت می شود. بنابراین در سیستم نقطه کوانتومی جامد ما، سالیتونها با سرعت کمتر از نور تشکیل می شود.

۲- ساختار الکترونی

یک نقطه کوانتومی شبه نیمکروی InAs با لایه خیس در سد GaAs را در نظر می گیریم. شعاع و ارتفاع نقطه در مرجع [۶] ۱۰و۵ نانومتر مشاهده شده است(شکل۱۵).

شکل ۱: a) نقطه شبه نیمکروی با لایه خیس .b) ناحیه شبیه سازی و مرزهای عددی.

برای بدست آوردن ساختار الکترونی سیستم، معادله شرودینگر را برای یک الکترون در نقطه و لایه خیس در تقریب جرم موثر حل می کنیم.

$$-\frac{\hbar^2}{2}\vec{\nabla}.(\frac{1}{m^*(\mathbf{r})}\vec{\nabla}u(\mathbf{r})) + V(\mathbf{r})u(\mathbf{r}) = Eu(\mathbf{r}),\qquad(1)$$

م، (r) E، $V(\mathbf{r})$ ، $m^*(\mathbf{r})$ و $u(\mathbf{r})$ ثابت پلانک بر 2π ، جرم موثر الکترون و پتانسیل محدودکننده وابسته به مکان، انرژی و ویژه تابع سیستم هستند. برای این ساختار، جرم موثر الکترون و پتانسیل محدودکننده عبارتند از: $m_{GaAs}^*(r,z) = 0.067m_0$ ، $m_{InAs}^*(r,z) = 0.023m_0$

ر تقارن $V_{GaAs}(r,z) = 0.697 ev$ بخاطر تقارن $V_{GaAs}(r,z) = 0$. سمتی، ویژه تابع را بصورت $V_{InAs}(r,z) = 0$ سمتی، ویژه تابع را بصورت $u(r, \varphi, z) = N'f(r, z)e^{il\varphi}$ می نویسیم که با جایگذاری آن، معادله(۱) در مختصات استوانه ای بصورت زیر نوشته می شود:

$$-\frac{\hbar^2}{2}\frac{1}{r}\frac{\partial}{\partial r}\left(\frac{r}{m^*(r,z)}\frac{\partial f_l}{\partial r}\right) + \frac{\hbar^2 l^2}{2m^*(r,z)r^2}f_l(r,z) - \frac{\hbar^2}{2}\frac{\partial}{\partial z}\left(\frac{1}{m^*(r,z)}\frac{\partial f_l}{\partial z}\right) + V(r,z)f_l(r,z) = Ef_l(r,z),$$
(7)

که 'N ثابت بهنجارش و..., 2, ... = |l| است. معادله (۲) را بطور عددی باروش المان محدود حل کردیم و ترازهای انرژی سیستم را بدست آوردیم. ناحیه شبیه سازی و مرزهای عددی درشکل ۱۵ نشان داده شده است. ناحیه را به المانهای مثلثی تقسیم کردیم. در به المانهای مثلثی تقسیم کردیم. در رمزهای ۱ و ۲ دوشرط $f_l(r,z)_{InAs} = (f_l(r,z))_{GaAs}$ **n**. $(\frac{1}{m^*(r,z)}\overline{\nabla}f_l(r,z))_{InAs} = \mathbf{n}.(\frac{1}{m^*(r,z)}\overline{\nabla}f_l(r,z))_{GaAs}$ اعمال شده است که **n** بردارنرمال است.

به منظور بررسی وابستگی ساختار الکترونی به شکل و اندازه نقطه، فرض می کنیم که ارتفاع نقطه افزایش یابد حال آنکه شعاع ثابت بماند، یعنی تغییر شکل نقطه از حالت پخت به نیمکره ای با ارتفاع و شعاع مساوی. شکل ۲

شكل ٢: انرژى سه تراز اول سيستم برحسب ارتفاع نقطه.

انرژی سه تراز اول را برای ارتفاع های مختلف ۲۰۰۳۲۲۲ و نشان می دهد. با افزایش ارتفاع، انرژی تراز پایه و برانگیخته اول کاهش می یابد، انرژی تراز برانگیخته دوم تا ارتفاع ۶nm تقریبا ثابت می ماند و از ارتفاع ۷nm شروع به کاهش می کند.

برای بررسی خواص اپتیکی، سیستم نشان داده شده در شکل ۱۵ را درنظر می گیریم. فرض میکنیم که سیستم با میدان الکترومغناطیسی پلاریزه در جهت x برانگیخته شود و گذار بین دو زیرنوار رسانش را القا کند. المان ماتریس ممان دوقطبی $\left|\langle u_i | e \hat{x} | u_j
ight| = \psi_{ij}$ (9 بار الکترون

و u_i و یژه تابع زیرنوار iام) را بطور عددی محاسبه کردیم که با توجه به آن $\langle 2 \rangle \leftrightarrow \langle 1 \rangle$ و $\langle 8 \rangle \leftrightarrow \langle 2 \rangle$ ($\langle 8 \rangle \leftrightarrow \langle 1 \rangle$)، گذارهای مجاز (ممنوع) دو قطبی الکتریکی هستند.

۳- سالیتون های اپتیکی

می خواهیم خواص اپتیکی سیستم که با دو میدان لیزری برهمکنش می کند را بررسی کنیم. میدانها در جهت x پلاریزه شده اند و در جهت z انتشار می یابند. میدان الکتریکی اعمال شده به سیستم عبارت است از:

$$\mathbf{E} = \hat{x} E_p \exp(-i\omega_p t + i\mathbf{k}_p \cdot \mathbf{r}) + \hat{x} E_c \exp(-i\omega_c t + i\mathbf{k}_c \cdot \mathbf{r}) + c.c.,$$
(7)

و $\mathbf{k}_{p,c}$ و میدانها هستند. میدان کاوشگر پالسی ضعیف با فرکانس ω_p به گذار $\langle 2| \leftrightarrow \langle 1|$ و میدان کنترل پیوسته قوی با فرکانس ω_c به گذار $\langle 8| \leftrightarrow \langle 2|$ اعمال می شود. در تصویر برهمکنش با استفاده از تقریب موج چرخان و تقریب دوقطبی الکتریکی، هامیلتونی سیستم بصورت زیر نوشته می شود[Y]:

$$\begin{split} H &= -\Delta_p |2\rangle \langle 2| - (\Delta_p + \Delta_c) |3\rangle \langle 3| \\ &- (\Omega_c |3\rangle \langle 2| + \Omega_p |2\rangle \langle 1| + H.c.), \end{split} \tag{(f)}$$

 $\Delta_c = \omega_c - \omega_{32} = \Delta_p = \omega_p - \omega_{21}$ ناکوکی میدان های کاوشگر و کنترل، $\omega_{32} = \omega_{21}$ و $\omega_{32} = \omega_{21}$ فرکانس گذار و $\Delta e^{\pm 2} = 2\Omega_p = \frac{\mu_{32}E_c}{\hbar}$ و $\Omega_p = \frac{\mu_{21}E_p}{\hbar}$ فرکانس رابی گذارهای $\langle 1| \leftrightarrow \langle 2| e \langle 2| \leftrightarrow \langle 8|$ هستند. با استفاده از معادله شرودینگر وابسته به زمان، معادلات حرکت برای دامنه احتمال توابع موج الکترونی به صورت زیر بدست می آید:

$$\frac{\partial A_1}{\partial t} = i\Omega_p^* A_2, \tag{(\Delta)}$$

$$\frac{\partial A_2}{\partial t} = i\Omega_p A_1 + i\Delta_p A_2 + i\Omega_c^* A_3 - \gamma_2 A_2, \qquad (\mathbf{\mathcal{F}})$$

$$\frac{\partial A_3}{\partial t} = i\Omega_c A_2 + i(\Delta_p + \Delta_c)A_3 - \gamma_3 A_3, \tag{V}$$

است.
$$A_i(i = 1,2,3)$$
 و $\gamma_i \gamma_i e_i$ دامنه و آهنگ فروافت زیرنوار $A_i(i = 1,2,3)$ از طرفی، معادله موج برای میدان کاوشگر وابسته به زمان

عبارت است از:

$$\frac{\partial \Omega_p}{\partial z} + \frac{1}{c} \frac{\partial \Omega_p}{\partial t} = i\kappa_{12}A_2A_1^*, \qquad (\Lambda)$$

با $\frac{N|\mu_{12}|^2 \omega_p}{4\epsilon_0 \hbar c}$ با $\frac{N|\mu_{12}|^2 \omega_p}{4\epsilon_0 \hbar c}$ که N چگالی الکترون، σ_3 گذردهی خلا ،c، مرعت نور است. برای بررسی خواص پاشیدگی، رفتار اختلالی پاسخ سیستم به مرتبه اول میدان کاوشگر ضعیف Ω_p مورد نیاز است در حالیکه همه مرتبه های میدان کنترل نگه داشته می شود. با تبدیل فوریه زمانی معادلات (Λ - Δ) تا مرتبه اول Ω_p ، عبارت زیر برای تبدیل فوریه Ω_p

$$\Lambda_p(z,\omega) = \Lambda_p(0,\omega) \exp(iKz), \tag{9}$$

 $(1 \cdot)$

$$K = \frac{\kappa_{12}(i\gamma_3 + \Delta_p + \Delta_c + \omega)}{\left|\Omega_c\right|^2 - (i\gamma_3 + \Delta_p + \Delta_c + \omega)(i\gamma_2 + \Delta_p + \omega)} + \frac{\omega}{c} = K_0 + K_1\omega + K_2\omega^2 + \dots$$

نشان دهنده شیفت فازی ϕ در واحد $K_0 = \phi + i \alpha/2$ $K_1 = 1/V_g$ میدان کاوشگر، $\kappa_1 = 1/V_g$ عکس سرعت گروه است که عکس سرعت گروه است که شکل پالس کاوشگر را تغییر می دهد.

خنثی شدن پاشیدگی و اثرات غیرخطی منجر به تشکیل سالیتون های اپتیکی می شود، پس باید تحول غیرخطی میدان کاوشگر را درنظر گرفت. به این منظور، تابع میدان کاوشگر را درنظر گرفت. به این منظور، تابع موج $\Omega_p(z,t) = \Omega_p(z,t) \exp(iK_0 z)$ جایگزین می شود. با اضافه کردن قطبش غیرخطی میدان کاوشگر و جایگزینی z = z و $\eta = t - z/V_g$ معادله موج غیرخطی برای $\Omega_p(z,t)$ کندتغییر، تا مرتبه سوم بصورت زیر بدست می آید:

$$i\frac{\partial\Omega_p}{\partial\xi} - K_2\frac{\partial^2\Omega_p}{\partial\eta^2} = We^{-\alpha\xi} |\Omega_p|^2\Omega_p, \qquad (11)$$

که
$$\alpha \in K_2$$
 از معادله(۱۰) بدست می آید و ضریب غیرخطی W از رابطه زیر بدست می آید:
(۱۲)

$$\begin{split} W &= \kappa_{12} \frac{(i\gamma_3 + \Delta_p + \Delta_c)}{\left|\Omega_c\right|^2 - (i\gamma_3 + \Delta_p + \Delta_c)(i\gamma_2 + \Delta_p)} \times \\ &\frac{\left|\Omega_c\right|^2 + (\Delta_p + \Delta_c)^2 + \gamma_3^2}{\left[\Delta_p (\Delta_p + \Delta_c) - \gamma_2 \gamma_3 - \left|\Omega_c\right|^2\right]^2 + \left[\gamma_3 \Delta_p + \gamma_2 (\Delta_p + \Delta_c)\right]^2}. \end{split}$$

اگر مجموعه معقولی از پارامترها پیدا شود بطوریکه $K_{2r} > K_{2i}$ ،exp $(-\alpha L) \cong 1$ موهومی)، معادله (۱۱) به معادله شرودینگر غیرخطی i استاندارد تبدیل می شود:

$$i\frac{\partial\Omega_p}{\partial\xi} - K_{2r}\frac{\partial^2\Omega_p}{\partial\eta^2} = W_r \left|\Omega_p\right|^2\Omega_p. \tag{17}$$

جواب های این معادله سالیتون های تاریک($K_{2r}W_r < 0$) و روشن($K_{2r}W_r > 0$)را توصیف می کند.

اکنون می خواهیم بطور عددی وجود سالیتونها در سیستم خود را نشان دهیم. پارامترهایی که بکار می بریم، عبارتند $\Delta_p = 3.3\gamma_2$, $\Omega_c = 6.1\gamma_2$, $\gamma_2 = 100\gamma_3 = 10^{11}s^{-1}$ از: $\Delta_p = 3.3\gamma_2$, $\Omega_c = 6.1\gamma_2$, $\gamma_2 = 100\gamma_3 = 10^{11}s^{-1}$ باز: $\kappa_{12} = 5.27 \times 10^{12} mm^{-1}s^{-1}$ و $\Delta_c = -3.2\gamma_2$ $V_g \simeq c/10$, $\alpha = 0.02mm^{-1}s^{-1}$ و $\Lambda_c = -3.2\gamma_2$ $V_g \simeq c/10$, $\alpha = 0.02mm^{-1}s^{-1}$ و $\kappa_2 = c/10$, $\sigma_1 = 0.02mm^{-1}s^{-1}$ و $\kappa_2 = c/10$, $\sigma_1 = 0.02mm^{-1}s^{-1}$ و $\kappa_2 = c/10$, $\sigma_1 = 0.02mm^{-1}s^{-1}$ و $\kappa_2 = c/10$, $\kappa_1 = 0.02mm^{-1}s^{-1}s^{-1}$ و $\kappa_2 = c/10$, $\kappa_2 = c/10$, $\kappa_2 = 0.02mm^{-1}s^$

شکل۳: نمودار سطحی $\left. \frac{\eta}{\tau} \right|_{n_p/\Omega_{p_0}} \left| \frac{\Omega_p}{\Omega_{p_0}} \right|^2 e^{-\alpha\xi}$ و η/τ و η/τ , incomparent of η/τ , incomparent of

برای بررسی سالیتون تاریک، پارامترها را بصورت $\Delta_c = -4.1\gamma_2$ ، $\Delta_p = 4\gamma_2$ ، $\Omega_c = 6\gamma_2$ می گیریم، سایر پارامترها مانند سالیتون روشن است.

 $lpha = 0.02 nm^{-1}$ برای این مجموعه به دست آوردیم: $\alpha = 0.02 nm^{-1}$ دهنده $V_g \simeq c/10$ و همچنین $V_g \simeq c/10$ که که نشان دهنده تشکیل سالیتون تاریک در سیستم است. سپس معادله(۱۱) با شرایط اولیه معادله(۱۱) با شرایط اولیه $\Omega_p = \Omega_{p_0} \tanh(\eta/\tau)\exp(-iW_r\xi |\Omega_{p_0}|^2)$ را بطور عددی حل کردیم. شکل (۳b) تشکیل سالیتون تاریک را نشان می دهد.

همانطور که می بینیم با انتخاب پارامترهای مناسب، تشکیل سالیتون در یک سیستم نقطه کوانتومی جامد را نشان دادیم. برای فاصله انتشار گفته شده، جذب میدان کاوشگر قابل صرفنظر است. پاشیدگی سرعت گروه و ضریب غیرخطی که بدست آوردیم، با هم خنثی می شوند و سالیتون در حین انتشار، پایدار است. شرایط $|\Omega_c \tau|^2 > |2K_{2r}/W_r| < |0$ را برای انتخاب پهنای پالس کاوشگر به کار بردیم. بعلاوه سرعت گروه کاوشگر کمتر از سرعت نور است. این اثرات بخاطر تداخل کوانتومی ناشی از میدان کنترل بوجود آمده است. این نتایج برای سیستم نقطه کوانتومی جامد در دمای پایین صادق است.

۴- نتیجهگیری

ساختار الکترونی نقطه شبه نیمکروی با لایه خیس را به روش المان محدود بدست آوردیم. ترازها به شکل نقطه بستگی دارد. با اعمال لیزر قوی کنترل، تداخل کوانتومی بوجود می آید که باعث کاهش جذب و سرعت گروه پالس کاوشگر ضعیف در پنجره شفافیت می شود و در نتیجه سالیتون های روشن و تاریک با سرعت کمتر از نور در سیستم جامد ما تشکیل می شود.

مراجع

- S. Ünlü, İ. Karabulut, H. Şafak, Phys. E 33 (2006) 319-324.
- [2] W. Xie, **Optics Communications** 284 (2011) 1872–1875.
- [3] M. Dezhkam, A. Zakery, Chinese Optics Letters 10 (2012) 121901.
- [4] A. Keshavarz, N. Zamani, Superlattices and Microstructures 58 (2013) 191-197.
- [5] Yu.V. Vorobiev, T.V. Torchynska, P.P. Horley, Physica E 51 (2013) 42-47.
 [6] M. L. D. D. D. D. H. L. D. D. 202
- [6] M.A. Cusack, P.R. Briddon, M. Jaros, Physica B 253 (1998) 10-27.
 [7] W. Yan, T. Wang, Y.M. Li, Ont. Commun. 285 (2012)
- [7] W. Yan, T. Wang, X.M. Li, Opt. Commun. 285 (2012) 3559–3562.